If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2y^2+8y-14=0
a = 2; b = 8; c = -14;
Δ = b2-4ac
Δ = 82-4·2·(-14)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-4\sqrt{11}}{2*2}=\frac{-8-4\sqrt{11}}{4} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+4\sqrt{11}}{2*2}=\frac{-8+4\sqrt{11}}{4} $
| 62.5+x=(6.25) | | -2/3x—4/7=-3/2 | | (X-2)/(x+5)=5 | | 2x+12x=600000 | | 3X^2=180x | | 3X^3=180x | | 2x+3=300-x | | 2x+3=300=x | | x+2=X+(x/2) | | x-30+2x-15+.5x+15=180 | | 4/7x-2/35=-3,7x-1/15 | | 6x+2-4x=2+x-3 | | 9x^2+18x+56=0 | | x+6x-8+3x=180 | | 2.50x11=27.50 | | -8-x/3=4 | | -10+5y=15 | | -2m+9=21 | | 7=-7+2x | | 8/5x=50 | | (X-7)^2-4=(x+1)^2 | | -(2x+17)=33 | | 4.9t^2+9.8t=39.2 | | 4.9t2^+9.8t-39.2=0 | | (2x+6)÷5=4x | | 0=154-10t-16^2 | | 6^x+3=279936 | | 2x/3+5=3x-2 | | H(-1)=6x^2-2 | | .75×x=500 | | 1÷t+3=5 | | 4(x+3.6)=3x−1.4 |